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SUMNARY

Wi mss- the feasibility at a goodnew-ci-fit test based on an lntergral of the

weighted squared modulus CC the discrepancy between the sample and population

characteristic functions. The resulting statistic Is therefore analogous to the

Cramer-von Mises statistic and is shown to reduce to It as a special case. A number

"i o properties of the test have been derived, Including the asymptotic null distribution

of its statiStic. It Is shown that under mild regularity conditions the teut is

... consistent. A number of approximations to the null distribution of the test statistic

are considered, and are found to be successul in simplifying its application without

due lows of accuracy.

Keywordsi sample characteristic function, goodness-c-fit,

weighted sum of chi-equared variates l conststency,

asymptotic distribution; rate of convergence; cumulants,

approximate distribution.
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1. INTRODUCTION

The characteritic function cor a Md to any distribution function P( ) i3

defined by

0(u) = •lux dP(x) (1.1)

where i = -1, 1n uniquely associated with F (Lueics, 1970, p. 26). For many

purposes it in more convenient to work in this transform space rather than dealing

directly with distribution functions. AU a simple and wel known example, the addition

of Independent random variables corresponds to a multipUcation of characteristic

-* functions. Similarly, the behavior of characteristic functions under location and scale

shifts In particularly simple.

If XL, Xa,..., Xn is a sample consisting of independent and identically

distributed random variables with distribution function F(z), then an empirical

characteristic function ;n(U) may be defined as

;"(U)= : l u x  n(x) = e IUXj (1.2)

and ;n(U) completely specifiOG the sample X , Xz,..., Xn up to permutations. n

addition it foUows almost by defition that, for each fixed u, E(elUXj) = 0(u), so

that j,(u) is unbiased for 0(u). Thlus by the strong law of large numbers (Rao,

1965, p. 97) ;n(u) ti a strongly consistent estimator of 0(u) as well as being

unbiased.

The potential applicabilty of sample characteristic functions In the inference

setting of tests of goodness of fit has been Investigated by Beathcote (1972), Paulson

and Thornton (1975), Feurverger and Kuretka (1977), KoutrouveoLs (1960),

KoutrouveUs and Kellermeler (1901), Kurota and Takeuchi (1961), Ceorgo and
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"Beathote (1982), Bryant and Paulson (1962), Nall and Welsh (1963), Beathcote

(1962), Epps and Pulley (1963), and Csorgo (1986). Further reference@ and a

review are given by Ciorgo (1964).

This paper makes use of the goodnem of fit statistic

n = n ln(u) - %(u)Iz d(u), (1.3)

"V where w(u) is a given weighting function. This utaitstic is clearly analogous in form

i,'- to the Cramer-von iime statistic. There will be situations In which it is more natural

to use (1.3) than the more standard empirical distributon function (EDP) statistics.

o example, the existence of a viable characteristic function -oriented procedure

iuld be of both theorectical and computational value in tests of hypotheses concernlng

the stable distributions, some compound distributlons, or In cease where under the null

hypothesis the population distribution is neither purely deecrete nor absolutely

continuous. rurthermore, most of our results are essentially Independent of the

dimenion at the population under Investigation and will be directly applicable to

problems of multivariate goodness of fit. The multIvari ate cas could be far more

Important than the univarlate case because the uniform continuity of *( U) and ;n~(u)

permits simpficatin in analysis o the test statistics which will not be available to

.' multIvarlate EDP statistics.

2. A GOODNESS-OF-PIT TEST

The problem to be consdered here is the construction of a procedure, based on

the empirical characteristic function, whereby the goodness-of-fit hypothests

0  P a O  or 8 0 2 e(u) 2 0 0 (u) (2.1)

may be tested against the general alternative hypothesis

2
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8': F $ P0 or H: 0(U) A *0 (u). (2.2)

Bere r is the distrbution function of the population in question and LP Is completely

specified; the corresponding characteristic functions are * and 00 respectively. The

* formulation of hypotheses In term of 0 and *0 will be more natural for our purposes

for we will be workcing for the most part in the transform space. The test procedure

is based on the statistic (1.3) where 0n(u) is the empirical characteristic function

computed from a random sample of size n, X,, Xz,..., X n , drawn from the

population. The weighting function w(u) in (1.3) In a given distribution function,

nondecreasing, continuous from the right and bounded, with w(-w) = 0, w(w) = p > 0.

The value of the constant (3 is immaterial and will generally be taken to be unity.

Since I0n(u)I and 100 (u)I are bounded above by 1, the Integral in equation (1.3)

must converge. We will usually refer to w as a "weiIghting function" to avoid confusion

" with the distribution functions F and P0.

The consistency of the test of mull hypothesis based on run is based on two

, results of Bryant and Paulson (1979).

Lemma 2. 1

The quantity . lin(u) - 0(u)lz dw(u), where in(u) is the empirical

characteristic function based on a random sample of size n drawn from the distribution

whose characteristic function Is 0(u), has mean and variance given by

L lin(u) - *(u)I1 dw(u) = I ( - [*(u)12 ) dw(u) (2.4)

and

Var . 1In(u) -(u)
1I dw(u) =

n ( I(u)Iz dn(u) z + 7 r (10(u+t)lz + 10(u-t)l) dw(u)dw(t)

2(n-2) rO(u+t)0*(u)l*(t) + 0(u-t)*(u)0(t)) d(u)dw(t). (2.)

3
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-". Lemm .2.2

rat nAn be defined as in equation (1.3) where ;n(U) to based on a random

maple of size n from the population whos characteristic function is 0(u). Then a.

converges to the quantity 1.(u) - 0(u)JI dw(u) with probability one.

Since w(u) Is strictly increasing it places positive mass on every nondegenerate

u-interval and this implies that the 1((u) - *O0(u)l2 dw(u) in zero If, and

only if, F(z) = 7 0 (z). By Theorem ..1 nAn converges In law to a distribution

function G. Thus the goodness-of-fit test based on "n will have a rejection rule of

the form

Reject No if and only if na, > c.-

where C. is a critical value chosen so that asymptotically the size of the test is fixed

at a.

If F' P FO, some x, than an will converge strongly to a constant other than zero

as n ca so that nAn will almost surely diverge up to c. This argument is mmmarized

as

Theorem 2.1 The goodness-of-fit test of the hypothesis H0 F a LP based on the

statistic An of (1.3), where the weighting function w(u) Is strictly increasing, is

i 7.r consistent; that is, for any alternate distribution pi FO, the power of the test

approaches one as

Tests of fit based on only a finite number of u-values cannot be consistent since

the values taken on by a characteristic function at a finite number of u-values do not

characterize a distribution function. The asuomption in Theorem 2.1 that w(u) be

strictly increasing may be relaxed when the population of interest posemse an
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analytic characteristic function for then a characteristic function, and hence Its

distribution fUcton is uniquely determined by 1t values over any non-degenerate

u-Interval (Lukace, 1970, Chapter 7).

The statistic a. is similar in sructure and actually reduces am a special came to

the Cramer-von Rises statistic

WA = I(n(z) - 110(x))a dF0 (x) (2.6)

for testing H0 s = r0, where r0(z) is the completely specified distribution function

and Fn(x) Is the sample distribution function corresponding to the random mple X.,

X z , ,..., Xn putatively drawn from FO (x). We now sketch the proof of this amrtion.

On the Hilbert space L(0,12 of all square-ntegrable complex valued functions

on 0,11 the inner product of two functions h and g in given by (f, g) =

f(t)g*(t)dt. The set of functions {ei Za k t , k = 0,1,...l is a complete
0

orthonormal system on r'CO,1.

By means of the probability integral transformation, (2.6) is reduced to the form
r."r

WA = gn(t) dt = 11i012 (2.7)

where gn(t) = Gn(t) - t and Gn(t) is the sample distribution function corresponding

to the transformed sample Y.1 , Yz,..., Yn. By determining the Fourier coefficient of

I gn(t) with respect to e l af k t and utilizing parneval's equality in (2.7) it may be

showi that

= 1, Icn(u) - cO(u)It + o Icn(-2ffk) - c0 (-2ffk)(2+ £ (2.9)
*0u k=-co 4vzkzk 0O

= IZc(u) - co(u)l' dw(u), (2.9)(2..



wthere c0(u) is the characteristic function of a random variable on 10,11 and

Cn(u) in the apirical characteristic function associated With the Yj and w(u)

ts a step function whom definition Is clear from equation (2.8). The Cramer-von

Kises statistic is tUs a special case at n.

3. ASYMPTOTIC DISTRIBUTION OF THE STATISTIC naP)

We first consider the distribution of

P
nr4P) = n E In(Uk) - *(Uk)l4 W(Uk), (3.1)

k=.

a discrete version of the n~n of equation (1.3). The Uk in (3.1) are pre-selected

- abecisae and the wk = W(uk) are given non-negatlve weights. There are at least two

good reasons for considering n4 P). First, It Will turn out that the asymptotic

distribution of nrt, may be obtained in ementisIly the same manner as that of n&AP) o

(3.1). Thus the simplified problem will serve to motivate later considerations.

Secondly, there are situations of practical interest where 0(u) and w(u) are such that

the integral in equation (1.3) cannot be explicitly evaluated. If, for example, the

S. , desired weighting function were dw(u) = exp( -ua)du, then in equation (3.1) we might

Choose the Uk and wk to be the abscise and weights asoclated with the Hermitian

quadrature of order p (Stroud and Secrist, 1966, p. 217).

We Ww"al always take p to be even and Uk = -up-k+., wk = Wp-k+., k=,2,...,p.

Since wk = wp.k+i and (Re - Re *)(m * - In 0) Is an odd function we may write

(3.1) as

~p

n..P) = n r.£ (yn(u) " y(u))' vk. (3.2)
r, -

where y(u) is the transorm, y(u) = Re 0(u) + ImO(u), and yn(u) is its maple

Mly
o. 1°"
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cowntrPart, Yn (u) = Re On (u) + rM O (u).

Some rearrangement gives

n.":fin (3.3t )i

where

-t n  = n-nr .. I ,pjn
.. 

J=1 ! !

and

"kj= (COO Uk X 1 + sin ukX j - Re O( uk) - I 0(Uk)) Wk.

The pxl vectors ej are independently and identically distributed with mean

vector 0 and pxp covariance matrix N = (Mjk) given by

'= K(uj,u )(VjVw) (3.4)

where, as is easily shown,

K(u,v) = Re 0(u-v) + Im O(u+v) - CRe O(u) + Im 0(u)]CRe 0(v) + Im 0(v)]

n n coy (Yn(u), Yn(v)).

.- ' Since N is a covariance matrix it is symmetric and positive semi-definite of

rank r ap. We may therefore extract p real orthonormal eigenvectors cq,

q = 1,2,..., p, which span p-dimensional Euclidean space and satisfy

c Kc = , . q, k 4 p (3.5)

where Bqk is Kronecker's delta and A1, Az,..', A. are the non-negative

elgenvalues of N which are arranged so that A1 , Az,..., Ar are positive while

Ap+$ = ... = Ap = 0. Referring the inner product of equation (3.3) to the

orthonormal basis (c,, Cz,..., Sp) gives

* 7
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* p r (ST t= ( )a (3.6)
q=L.

since the random variables cT tn are degenerate at the origin with prob-

ability one for q > r. Prom (3.6) and the definition of t

r r n
nrA P) = " Aq r zqj (3.7).,-,q=1 -- . L

where

-4j - - # q = 1#2, ..., r; . --1.,2,...., n.

The rxl vectors = (zi., Zz.,''', Zr)T J = 1,2,..., n, are independent

and identically distributed with mean vector 0 and, from (3.5), covariance

n
matrix I. Since n-% zj converges in law to Nr(0, r) (Rao, 1965, p. 106)

we find that nAP) is asymptotically distributed as

r

£ J Xq9 (3.8)

' where Xz are independently and ldentically Xz distributed on one degree of freedom.

The characteristic function of n4 P) i

exp( tan -' (2 .qu)) r
c(P)(u) = e 2p(,I C tat - 2kqU < T, (3.9)

q=1

q=.

r
1= ( (1-2Aqiu))} (3.10)

II - 2uiM%'S (3.11)

The proper branch of the square root in (3.10) is specified by (3.9).

P
Equation (3.11) may be determined directly by observing that n C (in(u)

" . =,

:elS
r/

o° *'% > ,..



y( U))z to distributed asymptotically as a sun of correlated x32 variates

(Lukacs and Laha, 196', P. A-0-43). ft have thus proven

S. Theorem 3. 1

The goodntem-of-fit statistic n&AP) defined by (3.1) has, when the ma~ll

hypohes o H~Is correctly specified, the asymptotic distribution whose characteristic

*J~~Vq inction Is

C(P)(U) ( ~1-2A iu))-% = 11 2UiMi (3.12)

where N is the covariance matrix whose elements are given by (3.4),

A1j,A 2 ,..... J \r are the positive eigenvalues of N and r~p is the rank of N.

The determinant in (3.12) may be expanded (Pogorzel*1, 1966, pp. 31-32) In

term of the covariance kernel and the weights w3 as

-~~ ir 1-A C (uj,Uvj+-£ C uIk)wjvk

+( -A)P P P P
+ .. £C(uj .Uj .... ujP)f 1 1 , (3.13)
Pt 1=1 J 1L=1

where we have set A =2ui and

K( UL U., . . . K(u1,'u3

C(uL,u2, ...,q US) =.(.4

Equations (3.12) and (3.13) are Suggestive of the results that we may expect when

we let p (as well as r) tend to infinity in such a way that (3. 1) becomes the integral

expremi on (1. 3).

9
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4. TE ASYMPJOTIC DZSTRIDrJTION OP na*

Thi secton contains our main result concerning the UmitUng distribution of the

test statiftic. some preliminary lemma are stated without proofs. The main

reference for this section (and Section 6) 1 Dwnord and Schwartz (1958).

Define the function

, (u) a coo uXj + sin uX1 - Re O(u) - rm O(u) (4.1)

for j : .,2,... n. These processe are Independently and Identically distributed

with mean function E(s,(u)) = 0 and continuous cova.iance kernel K(u,v) given at

(3.4). Let tn(u) be defined by

t'(u) n'I M s1 (u) n1 (Yi(u) y(u)) (4.2)
J=I1

so that

i F tR(u)dw(u), (4.3)

the squared norm of tn(u) in LZ(w), the HUbert space of functions square integrable

with respect to w(u). We shall employ Paroeval's equality to expand nA. of (4.3) In

terms of a complete orthonormal system in La(w) consisting at least partially of the

eigefunctions of the integral operator

X y(u) -FK(u,v)(u)dv(v). (4.41)

. First we need some results concerning this operator.

There exitI a finite or countably infinite orthonormal system of eigeVfmctions

fq(u), q = 1,2,..., of the integral operator K of (4..), where fq(U) is associated

with the elgenvalue Aq, which together with an at most countable set of functions nq(v)

*t -.
10
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satisfying

.,.,(u,v) nq(v) dw(v) = 0 a.e. (w), q = 1,2,...,

form a complete orthonormal system In L2 (w).

Them assertions follow from the theory of linear operators of the Htlbert-Schmidt

type in Hilbert space (Duinford and Schwartz, 1958, p. 1012, and Schrneidler, 1965,

p. 57).

Lenna 4.2

The real and positive non -zero eigenvalues \,, A,.. ., of the selfadJotnt

integral operator K of (4.4), arranged In decreasing order and repeated according to

their multipliclty satisfy

q E Aq K(u,u)dW(u) = (I - 1(u))dw(u) < c.: .. q=1 -q

".L 4.3

The Fredholm determinant, defined by the paer series

< ' ®(-A)J r
"- D(A) = I + E -- Cu ,uz,..., uj)dw(u).., dw(uj),

J=L. J RJ

where C(u,,uz,.. .,uj) I8 defined in (3.14), is absolutely convergent for all complex

. and may be expressed as the infinite product

D(A) = 11 (1-qA),
q=L

the latter converging absolutely and uniformly for all A in any bounded region of the

complex plane.

Because the kernel K(u,v) in real, the real and imaginary parts of any

elgenfunction fq(u) associated with the eigenvalue Aq are also eigenfunctlors

amociated with Aq. The complete orthonormal basis (fq(u), flq(u), q = 1,2,...a ti

'IS.



Lemma 4. 1 may therefore be aamed to be composed of real functions, and for

smpUcity we will take them as such.

,, Our primary result will be given; in th proof we will assume that the number of

eienvalues Aq is infinite. if t"L is not the came (as In Theorem 3.1) the required

alterations will be obvious.

Theorem 4.1

The goodnes-of-fit Statistic nAn of equation (1.3) has, when the null hypothesis

S 0 is correctly specified, the aymoptotic distribution whose Characteristic function

c(u) is

C(U) = n (i-2Aliu)' D-%(2ul)
q=1

where )z, A,..., are the positive *igenvalues of the integral operator given by

equation (4.4) with kernel K(u,v) defined at (3.4). D(A) i the Fredhola
S.,.

determinant associated with this operator, defined in Lemma 4.3.

Proof

Using Parseval's equality, we expand the squared norm in equation (4.3) with

respect to the complete orthonomal system (fq(u), nq(u), q = 1,2,...). This gives

nAn = " (tn, fq)" + 1: (tn, llq) . (4.5)
q=1 q=1

Now by Lemma 3.1 we have E(tn(u)) = 0 and CoV(tn(u), tn(v)) = K(U,v).
",-'.

Therefore, use of Pubinis' theorem gives, for q = 1,2,...,

- E(tn, 71q) = E(tn, fq) = 0,

Z((tn, inq) a ) = 0, (4.6)

-((t,, fq)a) = Aq fA(u)= (.)

12
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Pros equations (/*.6) and (4.7) we have

E E(tn , fq)z + E E(t n , 1q)2 = Aqq=1 q=1 q=1

which we have shown to be finite. Accordingly (Rao, 1965, p. 91), the am in

equation (4.5) is convergent with probability one and E(nan) : C Aq.
q=l

Each of the terms (tn, lq) z in equation (4.5) is, with probability one, degenerate at

-A the origin. Since there are at most a countable number of ouch terms, we have that

with probability one n&, may be expresed as

nAn E (tn, fq)2 . (4.e)

As in the proof of Theorem 3.1, let

zqj - n
; Zq,j = (lfq) , q : 1,2,..., j = 1,2,..., n,

so that

n n = £ Aq £ ZqJ 2  (4.9)
q=1 j=1

Thus, E(zqj) = 0 and

Sf((u,v),(v)d(v) dw(u)

COv(zqj , Zq~j - (AjU~ J.f.I - '' '' '

kq® fq(U)fq,(U)dw(u) 8 qq..

If we nov define the truncated sums

r n
E', = £(t,,, fq)z E £ Aq(n'I E Zqj )Z (4.10)
q= q=J1

" r = 1,2,..., it follows by Theorem 3.1 that na4r) is asymptotically

13
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distributed as =ql r. hqX4, a weighted sumn of Independent X2 variates

one degree of freedom, with characteristic function cC '1(U) given by (3.10) with p=r.

Le ~be a sequence of distribution function converging to a distribution function

P on the contiity set of LP. This mode of convergence is denoted by Fn => F . Let

Gn be the distribution function of nh11, G A r) the distribution function of nA4r) an

G ( r) the distribution function of Q ( ) whose characteristic function In c( r) (u). We

have shown that Ggr) => G( r) for fixed r. An application of the continuity theorem

(Lukace, 1970, pp. 49-50) and Lemma 4.3 implies that G(r) => G.

The proof Is completed by constructing a sequence (r ., n = 1,2....) which

diverges monotonically up to +. and showing that =>Gwic ii ml

that Gn => G (Rao, 1965, pp. 100-102). Since the distribution functions G(r)(x)

are contljmjous, we have by Polya 's theorem (Rao, 1965, p. 100)

Bence we can define integers qp by qp = leasnt integer > qp-I. such that

IGr,(x)(P) ()(x)I < 2-P for all n ak qp, with q = 1,2,..., qO 0. We than

take

r= p for n =qp + 1, qp +2,..., qp+I,

n = 1,2,..., p=1,2,....

Then for any x and p

rrn
IGn (Z) - G(P)(X)I < 2, n = 0+1, qp+2,..., q(p+1 ) (4.11)

Lot e>0 be given, and let x be any point of G. Since 0;(r) => G, there

exists an r* such that



IG(r)(x) - G(x)i < for all r a ,*. (4.12)

Without lose of generality, take r* large enough so that -- <
2'r 2

. Let n* = qr%+1. Then for any n & n-, there exits an t b r* such that

qp + 1Andq(F+1). For such n we have, by equation ( )

IG(rn)()G (X)I < < 1 -

while from equation (4.12),

r Thus fGlP)(x) - G(x)l < -

Thus
(rn) -G)I'I'~(rn)

I1nr(Z) - Gx)I % I ( ) - G(t)(x)l + IG()() - G(Z)I < 4

for all n b n*. It follows that O(re) G, which in turn iqlies that

Gn => G, and so the theorem is proven.

The correspondence between Theorems 3.1 and 4.1 is clear. Although it was

asamed in Theorems 3.1 and 4.1 that the underlying population was univarlate, the

proof would stllI go through with only notational changes If the populations were

multivarlate. Note that the function w(u) need not be absolutely continuous and the

. integral in the definition of the n&, need not be restricted to a finite support. For

*. example, the symmetry statistic nTn of Psuerverger and Muretka (1977) is of the same

general form as nan and Theorem 3.1 may be used to derive the asymptotic

distribution of this statistic under the null hypothesis of population symmetry.

5. SPECIAL CASES AND EXAMPLES

The remlts of Theorem 4.1 will be Illustrated in this section by applying them In

I15
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several specific examlO.

(a) 3uppose the hypothesized distribution Is d crete and that under go the

S. population random variable my take on the values x,, Xz,..., xm with positUve

probabilities p,, Pz,..., Pm, C Pq - 1. Then Re 4(u) = £ Pq COB (UXq) and

I54(U) = r Pq sin(uxq). A little algebra will reduce the kernel K(u,v) at
q~l

equation (3.4) to

K(UV) Z £ tq(U)gq(V)Pq
qul

• .2

where

-q(U) cg(uxq) + sln(uzq) - Re(u) - ru4(u).

Thus the kernel Is, In thi came, degenerate and it may be shown by an argument

""simlar to that given by Smthies (1950, pp. 36-30) that the nonzero elgenvalues of

((u,v) are precisely those of the matrix product AP, where the (J,k)th element

of A in

aik F gj(u)gk(u)dv(u) 1 a J, k a =,

and P = diag (P,, Pz,..., P ).

It Is seen that te situation here Is similar to the one considered in Theorem

3.1. The asymptoUc distribution at n, is that of a finite sum of independent

weighted chi-squared variates, the weights being the nonzero eigenvalues of

AP.

The came described above applies whenever data have been grouped; it also

Indicates a possible approximation method to be used when the eigenvablues of the

kernel K(uv) are not easily obtained.

4.1
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(b) Suppose that under the null hypothesis the underlying population has a

Cauchy distribution with location and scale parameters 8 and e respectively, uo that

the population characteristic function is O(u) = exp(18u - alul).

Suppose the weight function

v(U) = a J 'altIdt

Is chosen, where a Is a given positive constan. Then na, may be expUcitly

integrated and is given by

1 n 2 n 4+/a) 2nnAn * ; j z - £ + (5.1)
1 I '#" J=1 (1+c/a)a + 1 + 2a/a

-Where XI,Xz,..., Xn is the random sample drawn from the population. The

varlates have, if the null hypothesis is true, the Cauchy distribution:2 a

with location parameter zero and scale parameter y =herefore, the

null distribution of (5.1) depends only on y, which we will here take to be

unity for simplicity. We may thus assume that 0(u) = e-uI and w(u) =

J 'tldt. Then the covariance kernel K(u,v) (see 3.4) is equal to

K(u,v) = e-Iu-vI - e-JUI-vI (5.2)

It may be shown that the asymptotic characteristic function of nAn is given by
ao 161u1 "

c(u) = O-A(2u1) - (5.3)

where J, = 1,2,..., are the positive zeros of J,(u), the Bessel function of the

V777 first kind and order 2. Equation (5.3) characterizes the asymptotic distribution of

nAn as that of an infinite aum of exponential deviates having means 16/Jji. The

zeros J have been tabulated for 1 A a 4 20 in Abramowitz and Stegun (1970,

17
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p. 409).

(C) The abiUty to analytically obtain the eigenvalues associated with the

asymptotic distribution of nan as in the previous example, is unfortunately rather

unusual. A more typical sitaution is illustrated by asuming that the hypothesized

* distribution is normal with mean 8 and variance ca . The postulated population

characteristic function in then $(u) = exp(isu - kaZuZ). if dw(u) =

a exp(-aau) du, a > 0, is chosen, then equation (1.3) may be integrated to yield

u(ffn 2fiiffa n
nAn = -- 1: exp(-(Xj -X k )z/4a') - (-.'z2o) £ exp( "(Xl -8 )z/( 24Z+4 2 ) )

J,k=i J

4'. - + +i)(5.4)
..- (0.2 =)

It is possible to obtain the asymptotic characteristic function of the statistic nan
-.

of equation (5.4) under a correctly specified null hypothesis. As an example, when

0.a is chosen equal to a the asymptotic characteristic function c(u) of n n may be

shown to be equal to

. .- rl~~ (1z- 2bglq  u }-, { +2du r- ( -£ )/( 1- 2bgiz  u ) }- (5.

where b, d, f and Z are certain constants whose values are not important to the

discussion. Unfortuamtely the characteristic function c(u) is not readily inverted

numrically, and so this result seems to be of little practical value. What are really

needed are the values of the weights associated with the representation of the

".... asymptotic distribution of nAn as a weighted sum of independent chi-squared random

variable*, and these are not made evident by formula 5.5.

Fortunately, it turns out that the asymptotic distribution of nAn in the case where

the underlying population is normal may be accurately approximated by the asymptotic

distribution of a quadrature-type mm of the form considered in Theorem 3.1. Such

'-"," 
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an approximate procedure is easier and more accurate than the numerical inversion of

the expression in equation (5.5). As in example (b) the null distribution of (5.4)

depends only on the ratio y = a/a, so we may take without low of generality *(u) =

eXP(-Au") and dv(u) = exp( -uz )du so that

nn= n . I0n(u) - (u)1 2 e-u " du. (5.6)

The form of equation (5.6) suggests that the asymptotic distribution of n&n be

approximated by that of (3.1) where Uk and Wk, k = 1,2,..., p, are respectively

the zeros of the Hermite polynomial of (even) order p and the associated Hermitian

quadrature weights. These have been extensively tabulated by Stroud and Secrift

(1966, p. 217). The asymptotic characteristic function of nAP) is given in Theorem

3.1, where A&P), q = 1,2,..., p, are the elgenvalues of the pxp matrix Mi(P) whom

(q, q') element in, from (3.4)

ae(0) = (e-)2(Uq-Uq")2/2 e'- Zu/2"yZu4h/2 ,qWq)A (5.7)
qq'

"9.

To aid in the comparison of the distribution of nAn and nr , we tabulated the

values of the first four cumulante of the asymptotic distributions of n4P) and f rn

for various values of p and for y ranging from i to 3. The jth CumJlant of nMAP) in

-a given by

p
KJP) = (J-1)12J- F" (A4P))J, j = 1,2,..., (5.8)

q=1

which follows from the characterization of nP) as a weighted sum of Independent

ch-squared random variables each with one degree of freedom, along with the

additivity of cumulanlts. The cumulanta Kj, J=1,2,..., of nAn are calculated by

formulas which Will be provided in Section 7. In particular K1. and K. can be

obtained by the reults of Lemma 2.1.

19
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Our computatonu indicate that the first four cumalants of n& P) reach their

asymptotic values for y = a When p=12, for -1 when pa20, for y=3/2 when

p=36, and for y=3 when p=64. The cum lants of nAP) are rapidly convergent to

thoe of nA. if the ratio y = a/c is not large. When y is large the kernel K(u,v)

becomes poorly behaved and in therefore difficult to approximate by H. For y

relatively nall and p sufficiently large the asymptotic distribution of ri& P)

provides a good approximation to the distribution of na,.

The use of approximating sums of the form given in equation (3.1) to determine

the asymptotic distribution of na, is not always as effective as the preceding results

might lead one to suspect. Referring back to example (b) where the hypothesized

* ~ population was Cauchy with scale parameter one and the weighting function dw(u) =

.p. e -p(-Iul)du was employed in the definition of na, it Is reasonable to approximate

nAr by use of a quadrature sum of the Laguerre type (Stroud and Secrit, 1966, p.

253). The asymptotic distributions of such suw, however, converge to that of nan

rather more slowly than was seen in the case where the underlying population was

normal. This is to be expected, since the covariance kernel K(u,v) corresponding to

the Cauchy distribution, given in equation (5.2), is not everywhere differentiable.

Thus by approximating the distribution of n&, by that of a statistic of the nabre of

n,"P) of equation (3.1), we are essentially replacing the problem of obtaining the

poeitive eigenvalues associated with a homogeneous integral equation of the form

Ay(u) = K(u,v)y(v)dw(v) (S.9)

vith the problem of finding those corresponding to the linear syotem

P
\yq a r K(uq,uq.)Wq-yq, q = 1,2,..., p. (5.10)

q°=l

r.'.'20
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It cannot be expected that the linear system accurately approximates the integral

equation unless the kernel K(u,v) Is smooth.

6. INVERSION OF THE CHARACTERISTIC FUNCTION

The distribution of the goodness-of-fit statistic ra, is given in terms of its

characteristic function c(u) by Theorem 4.1, but in order to apply this statistic to a

given testing situation, an inversion of the characteristic function is required to

produce the necessary critical values. The problem of inverting c(u) Is similar to

that considered by Durbin and Knott (1972) in their analysis of the residual BLUm 8P

of the Cremer-von Misee statistic and the method of solution outlined here Is

essentially identical to their procedure, which is based on the work of Gil-Pelaez

4 (1951) and Imhoff (1961).

The asymptotic characteristic function of nAn is, from Theorem 4.1

2 E tan" ' (2A
c(u) = 17 (1-2Aqiu)- = q1 (6.1)

q2=1
q._l( 1.4Au )

Denoting by G (x) the asymptotic distribution function Of nA1n and making the

substitutiton 2t = u in the inversion formula of Gil-Pelaez (1951), leads to the

approximation (Imhoff, 1961)

"'-' F sin J rtn-L( IqU) WX
: G() - -I q=Pj du (6.2)

~q=1

-P-1

Whoere \P is adjusted by setting it equal to E(n n )  r- Aq so that a match
. _ q=1
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of the expectations of the two suns ts effected. The integral in (6.2) is evaluated

by Gauimaan quadrature with repeated interval halving until the error, based on

successive Iterations, is acceptably small. Expression (6.2) can be used to compute

the exact values of G(x) = Pr(nrnAX).

7. APPROXIMATIONS TO TRE DISTRIBUTION OP nAn

The results of Sections 2, 3, 4, and 5 make possible the application of the

statistic nr to tests of goodness-of-fitl its distribution under a correctly specified

*-- null hypothesis has been ascertained In terms of Its characterIsUc function, and a

procedure by which this characteristic function may be inverted has been presented,

so that the critical values on which the hypothesis test is based may be calculated.

Even so, from a practical point of view these results are unsatisactory; It has been

seen that, in order to obtain the characteristic function of nan , the elgenvalues of a

certain integral operator must be determined, and once this has been done a numerical

integration is required to perform the necessary inversion. (This is not the case for

Theorem 3.1. ) Of course, If the proposed testing procedure were to be used only In

a limited number of more or less typical situations this would cause no difficulty, for

then tables of the critical values of nn relevant to those situatiton rnruld be

prepared. A goodnews-of-fit test based on the empirical characteristic function

should, however, be applicable to a wide range of problems precisely because it is In

Iunual circumstances, where the standard tests are not applicable or else can only be

E employed with difficulty, that such a testing procedure would be of greatest value.

It is clear that reasonably simple and yet accurate approximations to the

distribution of nAn are requ.red. It will now be shown that certain approximations,

formulated in term of the cumulanta of nAn , meet these criteria. Stimulation remlts

22'p



presented in this section indicate that the convergence of the distribution of na in

quite rapid, implying that our results are of practical use for moderate =mple sizes.

The iterated kernels 1j(u,v) associated with the kernel K(u,v) are recursively

defined by K1 (u,v) = K(u,v) and

KI(u,v) = Jj.(U,t)(t,v)dw(t), j • 2.

Zt Is shoIW In DUnford and Schwartz (1963, pp. 1085-7) that

01 = Xj(u,u)dV(u) = q , for J b 1,

and

D(A) = exp - = 01 A
3 /J

for all I A mfficiently small. Since from Theorem 4.1 the asymptotic characteristic

function c(u) of nA,, is given by D-%(2u),

dE

c(u) = exptt 'r (2ui)i/3 1

SFinally, this gives the cumulant generating function, valid for all l ul sufficiently small

(Cramer, 1946, pp. 185-6),

log c(u) = k E 01(2u1)J/j = J LKj(iU)J/Jf.
1=1 1=1

Equating coefficients of uJ then yields

j Z (J-1)1 2j-' 0  . (7.1)

If the weighting fiunction w(u) in equation (1.3) in chosen so that n*n can be

explicitly integrated, as in examples (b) and (c) of Section 5, then the evaluation of

the first several integral& in Pj may often be performed by straightforward, if

somewhat tedious, calculations. We will subsequently need expressions for the

'II 23
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(b) Pearson's (1959) three-cumulant rz approximation

The approximating variate has the form

W = (X - V) KI + ,

where here Xz is a chi-squared variate with v = BK3 /KZ degrees of freedom so that

* - na n and W have the same first three cumulants. Thus
'7

P(nAn  x) = P(X Z is y), y = ( -,)-) t!

(c) Sum of two independent welihted chi-squared variates

Let the approximating random variable be

z = a,.x + axi (7.3)

where XI and xi are Independent and have chi-squared distributions with v, and v,

degrees of freedom respectively. Equating the first four cumulante of Z and nAn

requires that

a v1 + aw. = K, 2a-v, + 2azf = a2 ,

.. : ( 7. z.)

eaISy. + SaIv, = K3 , 48a.v± + 49aiva = K4

Some algebra will show that the values of a1 , a., V, and va satisfying (7.4) may be

obtained by taking a. and a, to be the solutions of the quadratic equation

031 PI3)a 2 t + (0104& 00 33)a +. (Pf - 130,S) =0 (7.5)

with

VI 01 , = :3z ;a (7.6)

a,(a a,) a,(a z - a)

.and determined from (7.1).

In every sirtUon to which this approximation has been applied, equations (7.5) and

25
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(7.6) have yielded real and positive values for aL, a z , v, and v1 .

Direct inversion of the characteristic function of Z, In (7.3), gives, for v, +

- . Vz > 2 (Gradlhteyn and Ryzh.k, 1965, p. 320, 3.394-7), an expression for the

density of Z which may be integrated termwise and rearranged to yield the distribution
4.-

I. function GZ(X) of Z as

.. (a,/a.) zo r(%(vz 2Y)) a,(7)GZ(Z) = IC I I VVk+( 72)t

M(vit) I(=O I aJI 2ka aj

where V,(. ) is the distribution function of a chi-squared variate with v degreee of

" freedom and a. IS the smaller of the weights a . and a.. The above development

allows one to approximate the distribution of nAn by P(nAn -6 x) a GZ(Z).

* , If the underlying population Is specified to be normal with mean a and variance

al under the nufl hypothekis, and if dw(u) = axp(-azu8 )du Is chosen In the

definition of nAn, hen equatione (7.2) may be used to compute cumulant matching

approximations of the three types that have been described for the mIll asymptotic

distribution of the test statistic. Results are presnted in Table 1 for the came where

r = 1. Also included is the distribution of nan calculated by mans ofa

approximating quadratures as In example (c) of Section 5. Quadrature. of order 4e

and 61 yielded identical resulte for all entries In Table, which are thought to give the

-true distribution of nAn to within + 10 " 4.

.-* ~It can be seen that the distribution of the weighted sam at two chi-squared

variates provides an excellent approximation for the asymptotic distribution of nan,

particularly for large x. The Pearson approxmation gives results which are almost as

good In the upper tail, althouh as must be expected It Is not very accurate in the

.4.. vicinity of the origin. The Pearson and sum of 2X&Is approilmation appear to be
_.s.

4 adequate for most practical purposes, at least If the desired sie of the test Is not

2-.6



ummually large. Patnaik's approximation is inferior to Pearson's approxImation, and

i. generally preferable wince the latter requires only sUghtly more effort.

,: -.:
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1. 
TABLE 1

Approximtuorm to the Asympto c Null D1tibutjon of.n When the [nderlytng POpulation Is Norval y = a/a a 1

x Pati arson SUm Of 2 Xa'R P(rnaf)
0.1 .1833 .1021 .1431 

.1396
0.2 .3277 .3239 .3024 

.3072
0.3 .4"3 

.427 
.4376

0.4 .5417 .5651 .56 .5490.5 .6210 .644, .6332 .63410.6 .6965 .7072 .7019 .70140.7 .7405 .7579 .7564 .70140.8 .7951 .7990 .7999 
.79600.9 .6220 .0327 .8350 
.0339

1.0 .0526 .8604 .9633 
.86241.1 .8779 .8933 .9064.851.2 .6966 .9023 .9052 
.9047

1.3 .9161 .9161 .9207 .9"71.4 .9304 .9313 .9336 .9331.5 .9423 .9422 .9332 .941.6 .9522 .9514 .9530 .95311.7 .9603 .9591 .9604 
.9605

1.0 .9671 .9655 .9666 
.9667

1.9 .9727 .9710 .9716 
.9719

2.0 .9774 .9755 .9761 
.9762

2.1 .9612 .9793 .9799 
.97"2.2 .984 .925 .9926 
.96292.3 .9871 .9653 .9854 
.9655

2.4 .9693 .9675 .9676 
.96772.5 .9911 .9995 .9995 
.9696

2.6 .9926 .9911 .9911 
.9911

2.7 .9939 .9925 .9924 
.9925

2.6 .9949 .9936 .9935 
.9936

2.9 .9958 .9946 .9945 
.99453.0 .9965 .9954 .9953 .9953
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A Similar comparison of approximations resulW when the underlying population Is

Cauchy with location parameter a and scale parameter e dw(u) = a exp( -aIul )du and

the ratio y = ela was taken over a range of values including unity. The results were

the same as for the normal care.

The acmulant matching approximations were also investigated when the distribution

speclfied under the null hypot esis It the stable law of index 'u whoe characteristic

function Is

*0(u) = ezpl-lul (1-1 sgn u)).

The statistic coni dered was the discrete approximation to

[ n = n 14n(u) - $O(U)l z *'lUldu

'-p

na P n rI41(U0 - *O(U)Z Wk~d

where u k and Wk, k = 1,2,..., 60 are the (two-sided) Laguerre integration abcie

and weights. The natural weight fuction is exp( - I u I) but exp( - I u I was tued for

computational convenience. The cumulants are obtained from (5.6). The agreement

between the asymptotic null distribution given by Theorem 3.1 and the approximation is

not quite as good as in the Gaag=1an and Cauchy examples but stil the maximm

deviation between the exact and approximate distribution determined by the weighted

am of two Independent X& variates is only .000 and in the upper docile is at most

.003. Pearsmon- approximation again perform quite well In the upper tail and would

probably be preferred due to Its simplicity.

Our computations indicate that cumulant-matching approximations provide a muitable

means for the evaluation of critical values required for use in tests of

goodness-of-fit. Since much approximations do not require excesive computAtion or

29
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analysis, they make the use of the statistic nan feasible from a practical point of view

over a wide range of situations.

.. RATE OP CONVERGENCE

since the derivation of the finite sample distribution of the varlate n. appears

to be intractable, any inferences to be drawn through observation of this statistic will

ordinarily be based on its asymptotic properties. IDderences could also be based on

the finite maple cumulants (2.1) and (2.5), obtained In special cases by expUcit

Integration or In general by rumerical integration, and application of Patnai's

approximation. This would not be diLffcult In principle but could be avoided if

convergence of the finite sample distributions is sufficiently rapid so that the statistic

is of value for moderate mple sis.

To see whether the null distribution of rnl Is well -approximated by its asymptotic

distribution for moderate n, samples from each of the normal ()y=-l), Cauchy (y-1),

and stable populations considered in the previous section were simulated. Empirical

distribution functions of nAn (n&AP) for the stable cae), based on either 2000 or

12000 replications, were generated for sample sizes n of 5, 15, 25, and 50.

Comparison of empirical and asymptotic distribution functions was made by the

usual chi -suared statistic applied in each set of replications to test the hypothesis

that It was drawn from the associated asymptotic distribution. The probability levels

Scorresponding to these tests are given in Table 2. Based on this empirical evidence

* the flnite sample size distribution of nn do seem to converge rapidly, and ume of the

"7 asmptotic distribution when sample size is greater than or equal to 5, say, would

appear to be Ymtied.

30
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TABLE 2

P-Valueo the X2 oodnmssof-Fit T~ft of

n
Case 5 15 25 50

Normal .77 .72 .67 ..

Cacy.58 .94 .36 .30

Stable ().32 .80 .61 .23
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